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The disturbance field induced due to a harmonic point source consists of discrete 
eigenmodes and a continuous spectrum ; these are studied by using generalized 
Fourier transform techniques. For a supersonic boundary layer, there exist seven 
branches of the continuous spectrum in the complex wavenumber space, four of 
which (two acoustic waves, one vorticity wave and one entropy wave) contribute to 
the flow field downstream of the source. The discrete eigenmodes spring off from 
these branches at some critical Reynolds numbers. The results for Mach 2 and 4.5 
boundary layers show that the receptivity coefficients for the stable discrete modes 
are much larger than that for the unstable mode. Therefore, the flow very near the 
source is dominated by the continuous spectrum and the stable discrete modes. 
However, the unstable mode takes over sufficiently far away from the source. It is 
shown that it is only necessary to consider the first few discrete modes to construct 
the solution. Calculations also show that, in a supersonic boundary layer, upstream 
influence from a localized disturbance is minimal. 

1. Introduction 
When a localized disturbance is introduced into a boundary layer, the disturbance 

field can be divided into two regions: one near the source and the other further 
downstream of the source. The flow field in the near-field region consists of all the 
discrete eigensolutions and the continuous spectrum which appears because the 
domain is unbounded and the governing differential equations admit solutions which 
are bounded at infinity. Since the continuous spectrum decays algebraically away 
from the source, contributions from the continuous spectrum can be neglected in the 
far field. Among the discrete eigensolutions, only one or a few, at most, may be 
unstable and grow exponentially downstream of the source and all the others will 
decay exponentially. Therefore, the disturbances in the far field consist of only the 
exponentially growing discrete modes. 

In  this paper we investigate the disturbance field near the source, and in a 
subsequent paper we investigate the disturbance field in the downstream of the 
source. The disturbances are introduced from a localized harmonic point source, 
figure 1. Thus, a wide band of spanwise wavenumbers is excited at the frequency of 
oscillation of the source. This problem can be considered as a model for studying the 
boundary-layer instability waves which are generated at isolated roughness sites or 
surface imperfections due to interaction with free-stream disturbances of a given 
frequency. 



632 

. Y  

P. Balakumar and M .  R. Malik 

'x = xo X 

uo = sin wrS(z) S(x - xo) 

X 

uo = sin wo t 6(x) S(z) H(t)  

FIGURE 1. Schematic diagram. 

Our objective is to consider compressible, flat-plate boundary-layer flows. Most 
previous investigations have considered incompressible flows. For example, Mack 
(1976) studied the stability of Blasius flow using the OrrSommerfeld equation and 
found that there exist only seven discrete eigenvalues in the complex frequency plane 
and only one, if it exists, is unstable. Although the number of eigenvalues varies with 
Reynolds number and wavenumber or frequency, for an infinite domain there is only 
a finite, and small, number of discrete modes, which cannot be used to  represent an 
arbitrary disturbance. The finiteness of the discrete mode spectrum for incom- 
pressible Blasius flow was proved by Miklavcic & Williams (1982) and Miklavcic 
(1983). For a bounded domain, however, the Orr-Sommerfeld equation has a 
complete set of eigenfunctions and eigenvalues (see DiPrima & Habetler 1969). 
Hence, any smooth function can be expanded in terms of this complete eigenset. 
Recently, Henningson & Schmid (1991) used this approach to study the evolution of 
disturbances in plane channel flow. 

Grosch & Salwen (1978) showed that the Orr-Sommerfeld equation in an 
unbounded domain has a continuous spectrum. As pointed out above, the continuous 
spectrum appears because the domain is unbounded and the governing equations 
admit solutions which are bounded at infinity. We note that the continuous spectrum 
in the Rayleigh equation, which has none or a small number of discrete modes 
depending upon the existence of inflection points in the mean flow profile, can also 
appear owing to  the singularity which exists in the Rayleigh equation. Salwen & 
Grosch (1981) showed that the set consisting of the discrete eigenmodes and 
continuum eigenfunctions is complete in the temporal Orr-Sommerfeld case. The 
solution of the initial-value problem of the linearized Navier-Stokes equations can be 
expanded as the sum of the discrete modes and some integral around the continuous 
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spectrum. The coefficients of these expansions are obtained from the initial 
disturbance using orthogonality conditions. Salwen & Grosch showed that in spatial 
theory the continuous spectrum consists of four branches in the complex 
wavenumber plane, and they derived the solution of the disturbance equation as a 
sum of discrete modes and continuous spectra. However, they considered only a 
semi-infinite streamwise domain in ZE [O,OO] and imposed the boundary condition at  
z = 0 for all times. They could not establish that in the spatial case the discrete 
modes and continuous spectrum form a complete set. 

Gustavsson (1979) solved the linearized NavierStokes equations as an initial- 
value problem in the temporal case using Fourier and Laplace transform techniques. 
He showed that the branch cut in the Laplace inversion plane introduced the 
continuous spectrum, and derived the solution using the contour integral method. 
Salwen & Grosch (1981) showed that their formal expansion procedure and this 
residue integral method led to the same result. Murdock & Stewartson (1977), using 
the heat conduction equation as a model equation, investigated the spectra of the 
OrrSommerfeld equation. They showed that the contribution from the continuous 
spectrum can be interpreted as the sum of discrete modes. Each discrete mode is 
represented by some integral over the continuous spectrum. They also verified that 
the number of discrete eigenvalues is finite in both the temporal and spatial cases and 
this number depends on the Reynolds number and wavenumber or frequency. 
Another interesting observation is that when these individual discrete modes are 
followed by decreasing the Reynolds number, the discrete modes are absorbed into 
the continuous spectrum at a ‘critical ’ Reynolds number. This implies that when the 
Reynolds number is increased new discrete modes spring off from the continuous 
spectrum. Hence, the number of discrete modes will increase with Reynolds number. 
The above observation also suggests that the continuous spectrum may have a role 
to play in boundary-layer receptivity to free-stream disturbances. 

Recently Ashpis & Reshotko (1990) considered the vibrating ribbon problem as an 
initial-value problem and obtained a long-time solution using the Briggs (1964) 
method and the contour integration technique. They derived the expressions for the 
four branches of the continuous spectrum and found the solution in terms of discrete 
modes and some integrals over the continuous spectrum. However, no quantitative 
results were given 

For compressible boundary layers, Tumin & Fedorov (1983) investigated the 
continuous spectrum and found that there exist seven branch cuts in the complex 
wavenumber space. They computed these branch cuts for two-dimensional 
disturbances at two different Mach numbers. In  this paper, we also consider 
compressible boundary layers and investigate the flow field near the source, which is 
represented by all the discrete modes and the continuous spectrum. In $2 we 
formulate the problem in a way similar to Gaster (1965) and Ashpis & Reshotko 
(1990), where the solution is sought using Fourier and Laplace transform techniques. 
Results for Mach 2 and 4.5 boundary layers are presented in $3. The results include : 
(i) the branch cuts and branch points of the continuous spectrum, (ii) the discrete 
modes, (iii) the locus of these modes with Reynolds number and (iv) the contribution 
to the solution from the discrete modes and continuous spectrum. A discussion and 
conclusions are presented in $4. 
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2. Formulation of the problem 
We consider two-dimensional, compressible boundary-layer flow over an insulated 

flat plate. A harmonic point source of disturbances is embedded in the wall at  a 
streamwise location x = xo (see figure 1). The distance normal to the plate is 
measured by coordinate y while z represents the spanwise coordinate. The x, y, z 
components of velocity are represented by U ,  V ,  W ,  respectively, and pressure, 
density and temperature of the gas by P, p, T. The corresponding disturbance 
quantities are denoted by (u, v, w, p ,  7 ,  0 ) .  We are interested in the response of the 
boundary layer to a three-dimensional harmonic excitation of a point source starting 
impulsively a t  time t = 0. Since we are interested in the flow field near the source, it  
is reasonable to assume that the basic flow is parallel to the x-axis, i.e. the mean flow 
is given as (U(y), 0, 0, P ( y ) ,  p ( y ) ,  T(y)). The flow field further away from the source 
is studied in a follow-up paper using a non-parallel approach. The linearized, non- 
dimensionalized Navier-Stokes, energy, continuity and state equations are 

azw a Z v  d p d T  aw av -2& (7 + - + *) + -- (- + -)] (2.3) 
az ayaz axaz d T d y  ay ax ’ 

au av awl  7 [ ( a p e  aze 820) 
p -+u-+v- =-(7-1) -+-+- +- p -+-+- (E i: i2 ( a ~  ay a~ g R e  ax2 ay2 az2 

a7 au av aw dp ar 
-+p -+-+- +v-+u--0,  
at (ax ay az) dy ax 

y w p  = p e + 7 ~ .  (2.6) 

Here the variables are non-dimensionalized as follows : velocity by T,, temperature 
by Tm,, density by p,, pressure by pm UZ,, length by (vmxo/Um)~, and time by 
(v, x0)~/C$,, where Urn, T,, p,, P,, v, are free-stream velocity, temperature, density, 
pressure and kinematic viscosity. Stokes’ hypothesis of vanishing bulk viscosity has 
been used here. 
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The non-dimensional quantities appearing in the equations are defined as follows : 
M is the free-stream Mach number, U,/(yWT,)a; u the Prandtl number, assumed to 
have the constant value of 0.72; y the specific heat ratio, taken as 1.4; Re the 
Reynolds number, ( U ,  xo/vm)~;  and W the gas constant. 

The boundary conditions at the wall are u = 8 = w = 0 and 

v(s,O,z,t) = sinwot&(x-sx,)&(z)H(t), (2.7) 
where w,, is the frequency of oscillation of the point source, 13 is Dirac’s delta function 
and H ( t )  is the unit step function, which indicates that the motion starts from rest 
a t  t = 0. We require that the disturbances decay far away from the plate. 

The physical disturbance field may be related to the spectral space by using the 
generalized triple Fourier transform defined as 

J - m  J - m  J-00 

where k,, k, are the complex wavenumbers in the (x, x)-directions, w is the complex 
frequency, 4 = {u, v, w,  8, P ) ~ ,  and $ = {C, fi, 63, 8,j5}T. Here, the tilde represents the 
transformed variable and superscript T represent the transpose of a matrix. Since 
is a causal function in t ,  the Fourier transform in time is equivalent to the Laplace 
transform in time. Thus, (2.1)-(2.6) can be transformed using (2.8) into the following 
system of equations for J: 

d2J d6 
A,+B-+c~=o,  (2.9) 

dY dY 
where A, B, C are [5 x 51 matrices whose coefficients are given in Malik (1990). 
Transforming the boundary conditions yields 

(2.10) 
- 

C=63=6=0 a t  y = O ,  (2.11) 

and J+o as y + m .  (2.12) 

Equations (2.9)-(2.12) form a non-homogeneous system, where the non-hom- 
ogeneity is due to the oscillation of the source a t  frequency o,,. The solution of (2.9) 
can be written as 

J(k,,Y>k,, 0) = i CJt  (2.13) 

where Ji (i = 1 ,8 )  represent the eight fundamental solutions of (2.9). The C, (i = 1, 
8) are integration constants which can be determined from the boundary conditions 

t-1 

(2.10)-(2.12). 
As y + co, (2.9) is simplified to 

C” + iik, f i f  + 4{ - i( k, - w ) Re - Qk: - k;} - fk, k, d - ik, Re # = 0, 
63’’ + iik, fi’-fk, k, 4 + 63{ - i(k, - w )  Re - k: -$kk,2} - ik, Re# = 0, 
f i t f  +lik 4 ,  C’ + lik 4 ,  63’-!Rej5’ + 6{ - fi(k, - w )  Re - f k: - f k;} = 0, 

(2.14) 
(2.15) 
(2.16) 

- { u R e  i‘y““ - w )  

21 

G f + i k , Q + i k , d - i ( k x - w ) 8 + i ( k , - w )  y W $  = 0. (2.18) 
FLM 239 
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The solution of this system can be written as 

(2.19) 

where qi (i = 1, 8) are column vectors and 

[ y M 2  - ( y  - 1 ) d P ]  
b,, = ki+k;-Re (k , -w)2  

iRe+ i (k , -w)yW ’ 

Re ( k , - ~ ) ~ { ; - g }  
b -  

23 - :Re + i(k, - w )  yM2 ’ 

b3, = -i(k,-w)(y-l)aM2Re, 
b3, = i(k,--w)aRe+k:+k2. 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

Here the bi} are single-valued functions obtained by taking the branch cut along the 
negative real {hi} axes, choosing the branches of (pi} such that real parts of &} are 
greater than zero for all {hi}. Since &, J6, 4, and 4, grow exponentially in y, the values 
of C,, C,, C, and C, have to be zero for the disturbance to decay in the far field. 

The values C,,  C,, C3 and C4 are obtained by applying the boundary conditions at  
the wall. They take the form 

where {Q} is a [4 x 4) matrix given by 

$11 $21 f 3 1  $41 

t 1 2  t 2 2  t 3 2  t 4 2  

$13 t 2 3  t 3 3  t 4 3  

$14 $24 $34 $44 

(2.27) 

(2.28) 

where & represents thej th  row of the solution Ji. Substituting for C,, C2 ,  C3 and C4 
in the expression for 6, (2.13), we obtain 

(2.29) 

where A is the determinant of the matrix Q and A ,  is the cofactor of the matrix 0. 
Before we proceed further we will examine (2.29). We observe that singularities of 
this equation appear in three wags. These singularities occur when w2-w; = 0, 
A(&,  k , ,w)  = 0 and also for singularities associated with & (i = 1,4). Here, A = 0 is 
the dispersion relation for the linear compressible stability equations. 

Since the governing equation (2.9) is analytic in k,, k,  and w ,  singularities which 
can appear in 6i are the branch-cut singularities associated with boundary conditions 
a t  the far field. The singularities w2--w; = 0 and A = 0 produce the normal mode 
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(a) k,-plane 
4 

I - -  4 

t (c) w-plane 
6 is analytic 

' Branch cuts for 
(e) k,-plane 

k, = k,, 

(d )  w-plane I 
t 

FIGURE 2. Integration paths in the complex kz-, w-  and k,-planes. F ,  L, J are the l!ou_rier and 
Laplace inversion contours in the kz-, w-  and k,-planes before the deformation (a, c, e). F ,  L are the 
Fourier and Laplace inversion contours in the k, and O planes after the deformation ( b ,  d) .  

solutions, while the branch-cut singularities introduce the continuous spectrum 
solutions. We invert this expression for 6, (2.29), from the Fourier space to physical 
space in order to obtain the disturbance quantities #(x, y , z , t )  and evaluate the 
solution for t +- 00. To this end, we use the triple inverse Fourier transform defined 
as 

where J, L, F (see figure 2) are the inversion contours in the kz-, w-  and k,-planes, 
respectively. Substituting for 4 from (2.29), we obtain 

21-2 
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where (2.32) 

From computational considerations, it is easier to solve for 6 than for J,, 6,, &, and 
64 separately. We see that & satisfies the following equations : 

d2& d& 
A ~ + B - + C & = O ,  

dY dY 
(2.33) 

(2.34) 

(2.35) 

Here & is a 5-element vector whose elements are {G,  v", 6, 6, @}. From (2.19) a t  
y+ GO we have 

i-1 

(2.36) 

We have eight equations with four unknowns C,, C,, C3 and C,. Eliminating C,, C,, 
C3 and C, we obtain four necessary boundary conditions a t  the far field in terms 
of {C, ii, 6, 6, @, IT, zY, 8;}. Here prime denotes differentiation with respect to y. 

We use Briggs (1964) method to invert (2.31) and evaluate +(x, y, z, t )  fort + GO. For 
a detailed discussion of this method the reader is referred to the review by Bers 
(1983). The function & is analytic above the contour L in the w-plane and is analytic 
in the strips close to contours F and J .  I n  the Briggs method the F ,  L contours are 
methodically shifted to  contours I", (see figure 2). After this is done the same 
analytic behaviour is preserved. The function @ is analytic above and in the strips 
close to P and J .  To find the finite-time solution, we need to evaluate the integral in 
(2.31) numerically. This involves three integrals: one in the w-plane, one in the 
k,-plane and one in the k,-plane. By seeking solution for t-, GO and shifting these 
contours F, L we simplify the integral in the w-plane to the residue integrals and 
hence reduce the number of integrals from three to two. I n  other words, we 
essentially transform the temporal problem into a spatial one. 

This deflection of contours is admissible only if there is no absolute instability. We 
assume that the boundary layers we consider do not have absolute instability. First 
we perform the inversion from k, to x according to 

eikzx &(kz, y, k,, w )  dk,. (2.37) 

To evaluate the integral we construct closed contours in the k,-plane and apply the 
residual theorem. 

For x > 0 



Discrete modes and continuous spectra in boundary layers 639 

and for x c 0 

where k:(w) is the location of poles of (l/d) in the plane above I", while k2.w) 
represents the poles in the plane below P .  Also, and Vb(w) represent the 
contributions from the integral around the branch cuts in the planes above and below 
the 9 contour, respectively. 

Next we perform the inversion from w to t : 

(2.40) 

Owing to the carefully selected contour 
around the singularities w = f wo contribute to I (x ,  y, k,, t ) .  Thus, we obtain 

in figure 2 (d), when t -+ 00 only the integrals 

1 
2n 

f(x, y, k,, t )  = -{ -7cieiwotl(x, y, k,, - wo)  + 7cie-iwotI(x, y, k,, w o ) }  

since I(x, y, k,, wo)  = f(x,  y, k,, - wo)  where 1 is the conjugate of I we obtain 

1 
27c f ( z ,  y, k,, t )  = -Re [27cie-iwotI(x, y, k,, w O ) ] .  

Finally, the inversion from k, to z is given as 

d(z, y, z, t )  = &JJ  eikzzT(x, y, k,, t )  dk,. 

Substituting for 8 from (2.32) we can show that 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

Here p ( k x ,  y, k,, w )  is the eigenfunction of the stability equations corresponding to the 
eigenvalue k:(w), and C(kx ,  k,, w )  is the associated receptivity coefficient which is 
computed from the relation 

(2.45) 

This coefficient gives the initial amplitude of the discrete modes which are 
generated by the point source. In order to study the downstream evolution of these 
modes in a growing boundary layer (in a following paper) we will use this as the initial 
condition. 

3. Results 
We have performed calculations for two-dimensional supersonic boundary layers 

a t  Re = 1000. The following two specific cases were considered : (i) M = 2, wo = 0.02 ; 
(ii) M = 4.5, uo = 0.2. Adiabatic wall conditions and a free-stream stagnation 
temperature of 311 K were assumed. Viscosity was computed using Sutherland's law. 
Boundary-layer thicknesses scaled with (v, x,/U,)i were computed to be 7.6 and 
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FIGURE 3. Branch cuts and poles in the complex k,-plane a t  Re = 1000, M = 2, w = 0.02; and (a) 
k, = 0, ( b )  k, = 0.08. The points show some of the least-stable eigenvalues given by A = 0. ( c )  
Eigenvalue spectrum from the global method for the same parameters as ( b ) .  

14.6, respectively. The governing equations, (2.33), were solved using a fourth-order- 
accurate two-point compact scheme (Malik, Chuang & Hussaini 1982). 

First we present the branch cuts and the poles which exist in the complex k,-plane. 
For a fixed k, and w ,  the branch cuts in the A,(i = 1,4) planes (2.20)-(2.22) are 
mapped in the k,-plane according to the formulae 

-A lo  = i(E,-w)Re+ki+k,2, (3.1) 
-'30 = ~ [ b 2 Z f b 3 3 + [ ( b Z 2 + b 3 3 ) 2 + 4 ( b Z 3  b 3 2 - b 2 2 b 3 3 ) l t l j  (3.2) 
-A40  = ~ [ b , Z + b 3 3 - [ ( b 2 2 + b 3 3 ) 2 + 4 ( b 2 3  b 3 2 - b Z 2 b 3 3 ) l t l ,  (3.3) 

where 0 6 hlo, A,,, A,, 6 03. 

Equation (3.1) can be solved for k, to  yield 

(3.4) k , =-I ,iRef $[Rez + 4(h,, + k,2 - iwRe)];. 

Combining (3.2) and (3.3) we can get a fifth-order polynomial equation for k, which 
is solved numerically using an IMSL subroutine. Therefore, we have seven branch 
cuts in the complex k,-plane, both for k, = 0 and k, =k 0. 

The results for the case M = 2.0, w, = 0.02, Re = 1000 are given in figure 3. Figure 
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k, = 0 

(0.0133, 1.12 x 
(0.02, 4.00 x 10-7) 
(0.02, 5.55 x 10-7) 
(0.04, 3.02 x 

(-0.02, - 1000.0) 
(-0.0204, -738.79) 
(-0.0329, -391.56) 

(a) ( b )  
k ,  = 0.08 k, = 0 

(-0.0214, 7.44 x lo-') (0.1636, 2.069 x 
(0.02, 6.80 x lo+) 
(0.02, 9.44 x 1 0 - 6 )  

(0.2, 4.0 x 10-5) 
(0.2, 5.55 x 10-5) 

(-0.2, - 1000.0) 
(0.0747, 1.718 x (0.2571, 8 . 0 3 ~  

(-0.02, - 1000.0) 
(-0.0204, -738.79) (-0.2014, -746.9) 
(-0.0329, -391.56) (-0.219, -490.89) 

TABLE 1.  Seven branch points in the k ,  plane for the continuous spectrum in supersonic 
boundary layers at Re = 1000: (a) M = 2.0, wo = 0.02; (b )  M = 4.5, wo = 0.2 

We note that A, is the root of the inviscid equation. By equating A, = A, = A, = 
A, = 0 we can obtain approximate expressions for five of the branch points in the limit 
of large Re. They are 

[ (M2 - 1) k,2 + W ~ W ] ~ ,  0) , 1 

(3.8b) 
( 3 . 8 ~ )  

(3.8d) 

( - w ,  -Re) (3.8e)  

These compare well with the values numerically computed for the first five branch 
points given in table 1.  The acoustic branch cuts from the approximate roots will be 
along the real axis. Thus, the departure of curves 1 and 3 from the real axis in figure 
3(a) indicates the level of correction at the Reynolds number of 1000. The 
approximate vorticity and entropy branch cuts will be vertical straight lines while 
curve 2 is expected to deviate from the vertical straight line at large values of 
Im (k,). The branch points corresponding to 

W w -  1 
w-1 M - 1  

k, = - + 2 [(W - 1) k: + w 2 w p  

have the phase speed in the wave direction given by 

w 1 
- case+- 

(k;+k,2); - - M '  

( 3 . 9 ~ )  

(3.9b) 

where 19 is the wave angle given by tan0 = k, /k , .  When 0 = 0 the phase speed 
becomes w l k ,  = 1 & 1/M. We see that the wave is travelling a t  the speed of sound 
relative to the free-stream velocity in the @direction. The continuous spectrum 
branches associated with branch points ( 3 . 9 ~ )  are the acoustic waves. The continuous 
spectrum branches associated with the first two roots, A,, A, (equation (3.5)), are the 
vorticity waves, A, (equation (3.6)) gives the entropy wave, and A, (equation (3.7)) 
gives the acoustic wave. The branch point corresponding to k, = w has phase speed 
equal to  the free-stream velocity. We also observe in figures 3 (a, b) and 4 (a) that a t  
the chosen Reynolds number one of the vorticity modes and one of the entropy 
modes come together in the upper half-plane. For computational purposes we 
consider these two branch cuts, labelled as curve 2, as a single branch cut in the 
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complex wavenumber space. Since the continuous spectrum in the lower half-plane 
has very large imaginary parts, its contribution will decay very rapidly in the 
upstream direction. Therefore, the upstream influence from localized disturbances in 
a supersonic boundary layer will be small compared to that in an incompressible flow. 

In incompressible flows, there exist four branch cuts in the complex k,-plane. The 
corresponding two roots in the incompressible case are given by (3.5) and (3 .7)  with 
M = 0. The roots from (3 .7)  are the solution to the Rayleigh equation while the roots 
from (3 .5)  include the effect of viscosity. The branch cuts from (3.7) appear along the 
imaginary axis with branch points at the origin. One of the branch cuts from (3.5) 
appears in the upper half-plane with the branch point at ( w , O )  and the other in the 
lower half-plane with branch points at (-u, -Re). Therefore, both branch cuts 
(inviscid and viscous) in the upper half of the k,-plane influence the flow field 
downstream of the source. Since the imaginary part of the viscous branch cut in the 
lower half-plane is large, only the inviscid branch cut influences the flow field in the 
upstream direction. Hence the ellipticity which is caused by the pressure introduces 
the upstream influence in incompressible flows. In compressible flows the inviscid 
branch cuts are shifted to the upper half-plane as shown in figure 3 ( a )  (curves 1 and 
3)  which reflects the hyperbolic behaviour of the supersonic flows. Hence, the 
upstream influence is only due to the viscosity and consequently small. Since in 
incompressible flows the inviscid branch cuts are along the imaginary axis, the 
contribution from this solution appears as a standing wave pattern in the streamwise 
and normal directions. 

In figures 3 (a, b )  and 4 ( a )  we have also marked a few of the least stable eigenvalues 
given by the dispersion relation d = 0. These are obtained by solving the linear 
stability equations using the Chebyshev spectral collocation method (Malik 1990). 
Some of the least stable eigenvalues are given in table 2. Also included are the values 
of the receptivity coefficient C. These receptivity coefficients are based upon the 
maximum amplitude of streamwise velocity fluctuations. We note that for the cases 
considered in this paper, the receptivity coefficients for the least stable mode are 
lower than those for the higher discrete modes. 

Figures 3(c)  and 4(b)  contain the results computed by discretizing the stability 
equations (2.9) using Chebyshev spectral collocation technique and by employing the 
QR algorithm which solves the generalized eigenvalue problem for the discretized 
system. For clarity, we have only shown the results for the k, domain used in figures 
3 ( b )  and 4 (a ) ,  respectively. These eigenvalue calculations yield all the discrete modes 
and also attempt to reproduce the discretized version of the continuous spectrum. 
Comparison of figures 3(c)  and 4(b)  with 3(b)  and 4 ( a )  indicates that the global 
method does a fair job in reproducing the continuous spectra. In  figure 3(c ) ,  the 
vorticity and entropy branches tend to diverge from each other, apparently owing to 
the lack of resolution. A total of 81 collocation points were used in a spectral multi- 
domain calculation. However, no attempt was made to optimize the grid distribution. 
For Mach 4.5 (figure 4b) ,  161 collocation points were used. Now the vorticity and 
entropy branches are closer to each other but the left acoustic branch shows some 
scatter at negative Re (k,). For the results presented in figures 3 (c) and 4 ( b ) ,  the free- 
stream computational boundary was assumed to be at y = 100 where zero 
perturbation conditions were imposed. 

It may be pointed out that a global eigenvalue calculation may also yield spurious 
modes which will move when the number of collocation points is increased or when 
the location of the free-stream boundary is changed. In  general, it is difficult to 
determine which of the eigenvalues obtained from the global calculation are true 
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Re = 1000 

R e =  162 
Re = 44.7 - 1  

-0.15 -0.10 -0.05 0 0.05 
Re (k,) 

FIQURE 5. The variation of the eigenvalues as the Reynolds number is reduced from 1000 for 
M = 2, w = 0.02, k, = 0, F = 0.2 x The Reynolds numbers a t  which the discrete modes join 
various branches of the continuous spectrum are also shown. 

(a) k,  = 0 

k, 
(3.733 x lo-', -3.696 x 
(2.841 x lo-', 2.619 x 

(4.366 x 4.495 x lo-') 

( b )  k, = 0 

(-9.670 x lo-'), 4.206 X lo-') 

k, 
(0.220, -3.091 x 
(0.221, 1.569 x lo-') 

(0.560, 5.659 x 10-l) 
(-0.565, 5.559 x lo-') 

k, = 0.08 

IC(k,> k,, w)l k2 IC(k,> k,, w)l 
2.2079 x lo-' (4.077 x lo-', -2.384 x 0.2333 
1.1448 (2.035 x lo-', 1.751 x 11.9667 

0.7527 (4.382 x lo-', 4.453 x lo-') 0.2193 
4.7175 x lo-' (-6.637 X lo-', 7.634 X lo-') 0.7404 

k, = 0.12 

IC(k,, k, ,  0)l k ,  IC(k,, k,, w)l 

1.7537 x lo-' (0.2181, 2.969 x 1.5405 x lo-' 
9.9071 x lo-' (0.2124, 1.288 x lo-') 6.1334 x 
0.3878 (-0.5498, 5.684 x lo-') 0.3862 
6.5089 

TABLE 2. Discrete modes and the corresponding receptivity coefficients a t  Re = 1000: 
(a )  M = 2.0, o0 = 0.02; (b) M = 4.5, wo = 0.2 

discrete modes and which are due to the continuum unless one knows where the 
continuous spectrum lies. However, the comparison of figure 4 (a, b )  shows that a 
well-resolved global calculation can, a t  least, pick up parts of the continuous 
spectrum. 

In figure 5 we plot the locus of the discrete modes in the k,-plane when the 
Reynolds number is reduced from 1000. For an incompressible flow, calculations by 
Murdock & Stewartson (1977) showed that the discrete modes are absorbed into the 
continuous spectrum when Reynolds number is decreased. In  figure 5 we observe the 
same behaviour in the compressible flow. This calculation was done for the case 
M = 2, F = 0.2 x where F is the non-dimensional frequency, F = w/Re .  
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FIQURE 6. Eigenvalues k, and receptivity coefficient ICI (based on streamwise velocity) for 
M = 2, w = 0.02, Re = 1000. 

Eigenvalues 1 , 2 , 3  and 4 are the four least stable modes a t  Re = 1000 as also shown in 
figure 3 (a) .  We traced these modes by reducing the Reynolds number. These modes 
are absorbed into the continuous spectrum a t  the critical Reynolds numbers of 162, 
646.2, 448.1 and 44.7 for modes 1, 2, 3 and 4, respectively. Also plotted is the 
continuous spectrum at those corresponding Reynolds numbers to show the merging 
of each discrete mode and the continuous spectrum. We also note that modes 1 and 
4 merge with the acoustic wave continuous spectra and the modes 2, 3 merge with 
the vortical or the entropy wave continuous spectra. Thus, the least stable mode goes 
to the acoustic branch for the present case of k, = 0. 

There exists only one unstable eigenvalue for a given k,. The variation of the least 
stable eigenvalue with spanwise wavenumber k, is plotted in figures 6 and 7. Figure 
6 shows the results for M = 2.0, wo = 0.02, Re = 1000 and figure 7 shows the results 
for M = 4.5, wo = 0.2, Re = 1000. The plots show the real and imaginary parts of the 
eigenvalue k, and the amplitude of the receptivity coefficient C (see (2.45)). At 
M = 4.5, the receptivity coefficient is almost constant for most of the unstable k, 
domain. The results in figures 6 and 7 show that a wide band of the k, spectrum needs 
to be considered if the flow field near a localized source is to be accurately modelled. 

Now, we present the computed results of I (x ,  y, k,,_wo), obtained from numerically 
integrating (2.37) along the contour P .  We calculate @ = (k,, y ,  kE, wo)  a t  selected grid 
points along P and integrate (2.37) numerically. The contour F is taken below the 
real axis and below the most unstable eigenvalue k:(wo). Since 6 = (k,, y, k,, wo)  is 
singular a t  the points k, = k;(w,), a fine grid distribution is required in the region 
directly below k, = k;(wo) or the p-contour needs to be shifted well below k:(wo). A 
simple way to remove this difficulty is to rewrite the integral in (2.37) in the following 
form, for x > 0, 
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FIGURE 8. Normal velocity distribution at y / ( u ,  xo Urn): = 2.3 for k, = 0, 
M = 2, wo = 0.02, Re = 1OOO. 

where k: represents the most unstable mode. Now P can be taken anywhere below 
the real axis. Since the integrand in (3.10) is a smoothly varying function, it can be 
evaluated without much dipculty. We compare solution I from (3.10) with the 
discrete mode contribution I ,  where 

I" = {eilCzS w,, k,, wo) wz, k,, wo, Y))k; (w, ) .  (3.11) 

Here I" is comp$ed for only the most amplified wave for a given k,. The difference 
between I and I comes from the contributions made by the continuous spectrum and 
the other stable eigenmodes. 
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X 

FIQURE 9. Normal velocity distribution at y (v, q, Urn)$ = 2.3 for k, = 0.08, 
M = 2, w = 0.02, Re = 1OOO. 

Continuous + discrete modes (real part) 

Re (0) x 

0.24 

0.12 
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-0.12 

-0.24 
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FIQURE 10. Normal velocity distribution at y/(v, x,, Urn$ = 5.2 for k, = 0, 
M = 4.5, w = 0.2, Re = 1000. 

X 

Here we present the result for the cormal velocity component w(x, k,, wo, y ) .  Figures 
8 and 9 show the result for 1 and 1 at the height y/(v,z,/U,)T = 2.3 for the case 
M = 2, wo = 0.02 and Re = 1000. The abscissa x represents the distance from the 
source scaled with (v, z,/U,)t. Figure 8 shows the result for the spanwise wavenumber 
k, = 0 and figure 9 shows the result for k, = 0.08. In  these figures, real and imaginary 
parts of I and yare shown. As expected, the difference (1-1) is large near the source 
and decreases with increasing x. It also decreases slower for k, = 0 than for k, = 0.08. 
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FIGURE 11.  Normal velocity distribution at y/(vmzo U,); = 5.2 for k, = 0.12, 
M = 4.5, w = 0.2, Re = 1000. 
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FIGURE 12. Contribution t o  normal velocity 
M = 2, k, = 0, wo = 0.02, Re = 1000. Curve 1 (3.733 x lo-', -3.696 x 2 (2.841 x 

at y/(v, xo Urn); = 2.3 from discrete modes. 

2.619 x lo-'); 3 (-9.670 x lo-', 4.206 X lo-'); 4 (4.366 x lo-', 4.495 x lo-'). 

Figures 10 and 11 show the result for I and f a t  the height y/(v, x/Uoo)f = 5.2 for the 
case M = 4.5 and w,, = 0.2. Figure 10 shows the result for the spanwise wavenumber 
k, = 0 and figure 11 shows the result for k, = 0.12. Here also, the difference is larger 
near the source-and it decreases with increasing x. In  contrast with the first case, the 
difference ( I - I )  decreases more slowly for k, = 0.12 than for k, = 0. This is because 
a t  M = 2 the oblique mode is more unstable, while a t  M = 4.5 the two-dimensional 
second mode is more unstable. 
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FIGURE 13. Contribution to normal velocity w at y/( v, zo Urn): = 2.3 from discrete modes. M = 2, 
k, = 0.08, o,, = 0.02, Re = 1000. Curve 1 (4.077 x lo-', -2.384 x ; 2 (2.035 x lo-', 1.751 x lo-') ; 
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3 (4.382 x lo-', 4.453 x lo-'); 4 (-6.638 x lo-', 7.634 x lo-'). 
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FIGURE 14. Contribution to normal velocity w a t  y/(vrnzo Urn): = 5.2 from discrete modes. M = 4.5, 
k, = 0, wo = 0.2, Re = 1000. Curve 1 (0.220, -3.091 x 2 (0.221, 1.569 x lo-'); 3 (-0.565, 
5.559 x lo-'); 4 (0.560, 0.569 x 10-l). 

Next we present the contributions from various discrete eigenvalues computed 
using (3.11). I n  figures 12 and 13 we plot the amplitude of the v-velocity at the height 
y/(v,x,/U,)i = 2.3 for some of the discrete eigenvalues a t  M = 2. Figure 12 shows 
the result for k, = 0 and figure 13 shows the result for k, = 0.08. Figures 14 and 15 
show the amplitude of the v-velocity a t  the height y/(v, x o / U w ) ~  = 5.2 for M = 4.5, 
for k, = 0 and k, = 0.12 respectively. We observe that the amplitude of the w-velocity 
is, in general, much larger for the stable modes than for the unstable mode. For 
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FIQIJRE 15. Contribution to normal velocity v at y/(vmxo Urn)$ = 5.2 from discrete modes. M = 4.5, 
k , = 0 . 1 2 ,  wo=0.2, Re=1000. Curve l(0.218, 2 . 9 6 9 ~ 1 0 - ~ ) ;  2 (0.212, 1.288~10-*);  3 (-0.549, 
5.684 x 10-9. 
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FIQIJRE 16. Contribution to normal velocity at y/( v, z,, Urn$ = 2.3 from continuous spectra 
1, 2 and 3 of figure 3(a ) .  M = 2 ,  k, = 0 ,  wo = 0.02,  Re = 1OOO. 

X 

M = 2 the amplitudes of stable modes are larger up to 15 boundary-layer thicknesses 
(for Mach 2, boundary-layer thickness scaled with (u,  x,,/U,)~ is 7.6; for Mach 4.5, it 
is 14.6) downstream for a two-dimensional wave, but for the three-dimensional wave 
the amplitude of the v-velocity remains larger than the unstable mode only up to 5 
boundary-layer thicknesses. For M = 4.5 similar conclusions can be drawn. It is seen 
that the largest amplitude occurs for the eigenvalue with negative real part. This 
means that the wave with the phase speed in the negative x-direction has the largest 
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FIQURE 11. Contribution to normal velocity at y/(v,x, Urn$ = 2.3 from continuous spectra 
1, 2 and 3 of figure 3 ( b ) .  M = 2, k, = 0.08, wo = 0.02, Re = 1OOO. 

X 

amplitude in the region near the source. While higher discrete modes may have larger 
amplitudes at the source (for example, Mode 4 for k, = 0 in table 2 ( b )  and figure 14) 
they have very high decay rates and, therefore, die off rapidly away from the source. 

We point out that we have presented results for the velocity normal to the plate 
while experimentalists generally measure the fluctuating component parallel to the 
plate. However, the conclusions drawn here regarding the relative importance of 
various discrete modes and the continuous spectrum should carry over to the 
experimental situation. 

The behaviour of the continuous spectrum near the source is now investigated. In 
figures 3 and 4, three branch cuts in the upper half of the complex k,-plane were 
shown. Figures 16 and 17 show the contribution from these continuous spectra to the 
normal velocity v at the height y/(v,z,/U,)~ = 2.3 for M = 2.0 a t  k, = 0 and 0.08 
respectively. The results are obtained by integrating the function 

/v eik+ dk, 
27t 

(3.12) 

around the three branch cuts 1, 2 and 3. Similarly, figure 18 shows the results for 
M = 4.5 and k, = 0. In all the cases, the contribution from the continuous spectrum is 
large near the source and decreases slowly downstream. The wavelengths of the 
oscillations downstream approximately equal the respective branch point values. 
For example, for k, = 0 the wavenumbers of oscillation are approximately Mw(M + 1 ), 
w and M w / ( M - l ) ,  which are the wavenumbers at the branch points 1,  2 and 3 
respectively. As we discussed previously, the wave speeds corresponding to these 
branch points are (Urn -u) ,  U,, (Urn +a) respectively where a is the speed of sound 
in the free stream. The waves with phase speeds (Urn &a)  are the acoustic waves and 
are the solution of the inviscid equations. However, the waves with phase speed U, 
appear from the solution of the viscous equations. We also observe that the 
contribution from continuous spectrum branch 2 is small compared to the other two 
spectra. For M = 2 we see that the contribution from branch 3 has larger amplitudes 
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FIQURE 18. Contribution to normal velocity at y / ( v m r o  Urn)$ = 5.2 from continuous spectra 1 ,  2 
and 3 of figure 4. M = 4.5, k, = 0, wo = 0.2, Re = 1000. 
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FIGURE 19. Variation of normal velocity w obtained from continuous spectrum 1 with y at z 
locations 250, 500, 750. 

than the other two and a t  k, = 0.08 branch 1 has larger amplitudes. At the higher 
Mach number M = 4.5 a t  k, = 0 branch 1 contributes most to the disturbance field. 

Figures 19-21 show the distribution of the v-velocity normal to  the wall a t  the 
locations x = 250,500,750. Figure 19 shows the contribution from continuous branch 
1 and figures 20 and 21 show the results for branches 2 and 3. As expected the 
continuous spectrum has larger disturbances outside the boundary layer than inside 
it. The peaks we observe in figures 19 and 21 are the Mach waves. Figure 20(a-c) 
shows the result for branch 2 which is associated with vorticity waves. It is 
interesting that they form a standing-wave-type pattern in the y-direction. However, 
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FIGURE 20. Variation of normal velocity v obtained from continuous spectrum 2 with y at x 
locations (a) 250, ( b )  500, (c) 750. 

the wave pattern moves in the free-stream direction with velocity U,. We also 
observe that the amplitude of the v-velocity in figure 20 is much lower than in figures 
19 and 21. 

Finally, we evaluate the solution I(z, y, k,, w )  from equation (2.38). This expression 
consists of two terms : the first is the summation over all the discrete eigenmodes, and 
the second term is the contribution from the continuous spectrum. In  figures 12-15 
we showed the contribution from the discrete modes separately. In figures 16-18 we 
showed the contribution from the continuous spectrum. Hence, if we combine these 
two results we should obtain the magnitude of I(x, y ,  k,, w ) ,  which should be the same 
as shown in figures 8-11. Figures 22-24 show the results obtained using this 
procedure, i.e. adding the contribution from the discrete modes and continuous 
spectrum. We calculated the contribution from four of the least stable eigenmodes 
shown in table 2. Figures 22 and 23 show the result forM = 2.0, k, = 0 and k, = 0.08. 
Figure 24 shows the result for M = 4.5 and k, = 0. As expected, we observe that 
figures 22-24 are essentially the same as figures 8-10, which confirms our numerical 
computation and shows that the solution near the source can be represented by the 
first few discrete modes and the continuous spectrum. 
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spectrum. M = 2, w,, = 0.02, k, = 0, Re = 1000. 
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4. Conclusions 
We investigated the disturbance field near the source in supersonic boundary 

layers. The disturbances are introduced from a harmonic point source embedded 
in the wall. The solution consists of discrete modes and continuous spectra which are 
obtained using Fourier transform techniques. We find that there exist seven branch- 
cut singularities in the complex wavenumber space. Four of them are in the upper 
half-plane and the other three are in the lower half-plane. The spectrum in the lower 
half-plane have very large imaginary parts. Hence, the flow disturbance in the 
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FIQURE 23. Normal velocity distribution obtained by summing discrete modes and continuous 
spectrum. M = 2, w,, = 0.02, k, = 0.08, Re = 1OOO. 
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FIQURE 24. Normal velocity distribution obtained by summing discrete modes and continuous 
spectrum. M = 4.5, wo = 0.2, k, = 0, Re = 1OOO. 

upstream direction will decay over a small distance. Therefore, in a supersonic 
boundary layer the upstream influence from a localized disturbance is minimal. 

The four branch cuts in the upper half of the plane contribute to the flow field 
downstream of the source. Two of these branch cuts are acoustic waves, one is a 
vorticity wave, and one is an entropy wave. At high Reynolds number the branch 
cuts for the vorticity wave and the entropy wave are close together and appear as one 
branch cut. The phase speed of the vorticity and entropy waves is equal to the free- 
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stream velocity. The phase speed at the branch points of the acoustic waves equals 
the speed of sound relative to the free-stream velocity. 

I n  all the cases the contribution from these continuous spectra is large closer to  the 
source and decays slowly in the downstream direction. The results also show that the 
disturbance from the continuous spectrum is larger outside the boundary layer than 
inside it. The contributions from the acoustic modes arc confined to the region 
between the wall and the Mach wave originating from the source. The contribution 
from the vorticity and entropy waves produces a standing wave pattern in the 
direction normal to  the wall. 

We evaluated the contribution from the first few least-stable discrete modes. We 
observed that the contribution to the solution from the stable discrete modes is much 
larger near the source than that from the most unstable mode. Since these stable 
modes decay in the downstream direction, eventually the unstable mode will become 
dominant in the far field. Therefore, if the source is located near the neutral or stable 
region, up to several boundary-layer thicknesses, 15-20, the contribution from the 
stable discrete modes will be larger than that from the most unstable one. In  other 
words, the near field of a vibrating point source may extend quite far downstream 
and measurements may be contaminated if they are made in this region. 

It is also verified that the flow field near the source is represented by the 
continuous spectrum and the first few least-stable discrete modes. By tracing these 
discrete modes in the wavenumber space and by reducing the Reynolds number, it 
is established that these discrete modes spring off from the continuous spectrum. 

Our results seem to suggest that, just like incompressible flow, there are only a 
finite number of discrete modes in supersonic flat-plate flow. A proof of the finiteness 
of the discrete spectrum is lacking for compressible flows. Finally, we have performed 
linear analysis using the parallel-flow approximation. It will be interesting to see how 
our conclusions will be altered when these assumptions are relaxed. However, such 
an analysis does not appear to be a straightforward extension of the present work. 

This work was sponsored under NASA Contract NAS1- 18240, Langley Research 
Center, Theoretical Flow Physics Branch. 

REFEREPU’CES 
ASHPIS, D. E. & RESHOTKO, E. 1990 J .  Fluid Mech. 213, 531. 
BERS, A. 1983 Plasma Physics Z (ed. A. A. Galeev & R. N. Sudan), p. 451. North-Holland. 
BRIOOS, R. J. 1964 Electron-Stream Interaction with Plasmas. MIT Press. 
DIF’RIMA, R. C. & HABETLER, G. J. 1969 Arch. Rat. Mech. Anal. 34, 218. 
GASTER, M. 1965 J .  Fluid Mech. 22, 433. 
GROSCH, C. E. & SALWEN, H. 1978 J .  Fluid Mech. 87, 33. 
GUSTAVSSON, L. H. 1979 Phys. Fluids 22, 1602. 
HENNINOSON, D. S. & SCHMID, P. J. 1991 S Z M  J .  ( to appear). 
MACH, L. M. 1976 J .  Fluid Mech. 73, 497. 
MIKLAVCIC, M 1983 Arch. Rat. Mech. Anal. 83, 221. 
MIRLAVCIC, M. & WILLIAMS, M .  1982 Arch. Rat. Mech. Anal. 80, 57. 
MALIK, M. R. 1990 J .  Comput. Phys. 86, 376. 
MALIK, M. R., CHUANQ, S. & HUSSAINI, M. Y. 1982 2. Angew. Math. Phye. 33, 189. 
MURDOCK, J. W. & STEWARTSON, K. 1977 Phys. Fluids 20, 1404. 
SALWEN, H. & GROSCH, C. E. 1981 J .  Fluid Mech. 104, 445. 
TUMIN, A. M. & FEDOROV, A. V. 1983 Prikl. Mat. Tech. Fiz. 24, 110 (transl. J. Appl. Mech. Tech. 

Phys. 548, 1984). 


